
1. Introduction

The effect of trigger jitter on the measurement of sig-
nals is to add signal-dependent noise and to reduce the
measurement bandwidth or, equivalently, to slow the
step response of the measurement instrumentation. This
reduction or slowing results in an increase in the transi-
tion duration, tsys, of the step response of the measure-
ment system. tsys can be approximated using:

(1)

where tinstr is the transition duration of the step response
of the measurement instrument and tjit is the transition
duration of the cumulative jitter distribution. The rela-
tionship between tjit and the measured value of the rms
jitter, σjit, can be found either by calculation and tables
[1] or by waveform simulation and extraction of wave-
form parameters, both of which yield tjit = 2.56 σjit.

If tjit < 0.1 tinstr, then in most cases tjit can be ignored.
However, in high-speed pulse metrology, tjit is often a
large fraction of tinstr. For example, in some samplers

with 3 dB attenuation bandwidths of 80 GHz, tjit ≈ 1 ps
and tinstr ≈ 5 ps. Jitter in this case must be removed to get
an accurate estimate of pulse parameters and an accu-
rate reconstruction of the input signal. Since jitter effec-
tively acts as a lowpass filter [2], it can be removed via
deconvolution. Although uncertainties associated with
the deconvolution process can be assigned to jitter
deconvolution [3], it would be advantageous to pulse
metrology if an alternative method with lower uncer-
tainties could be developed. Furthermore, the presence
of noise increases the uncertainties associated with the
deconvolution or waveform reconstruction process
[4,5]. Also, typical waveform reconstruction methods
employ a regularization operator that comprises a sec-
ond order difference operator. This difference operator
typically causes ringing near waveform transitions [5]
and, thereby, may increase the amplitudes of overshoot,
undershoot, and other waveform aberrations. Noise in
the measurement is reduced by signal averaging; this
reduction is proportional to M –1/2, where M is the num-
ber of waveforms averaged.

Volume 110, Number 5, September-October 2005
Journal of Research of the National Institute of Standards and Technology

511

[J. Res. Natl. Inst. Stand. Technol. 110, 511-527 (2005)]

The “Median” Method for the Reduction of
Noise and Trigger Jitter on Waveform Data

Volume 110 Number 5 September-October 2005

N. G. Paulter and D. R. Larson

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-0001

paulter@nist.gov
larson@nist.gov

The “median” method for the reduction of
the effect of noise and trigger jitter on
waveform data is described. The effective-
ness of this method was examined using
simulations and experiments and, for typi-
cal jitter and noise observed in electrical
pulse metrology, is shown to provide
reconstructed waveforms with transition
durations that accurately match those of
the input signal. Also, for aberrations, an
upper bound on the error in the amplitude
of the aberration is provided.

Key words: aberration; median; median
method; noise; overshoot; transition dura-
tion; trigger jitter; waveform.

Accepted: July 18, 2005

Available online: http://www.nist.gov/jres

2 2
sys instr jit ,t t t= +



Each of the m (m = 1, 2, ..., M) waveforms, fm[tn]
(n = 1, 2, ..., N, where N is the number of samples in a
waveform) is described to first order by:

(2)

where f0 is the jitter-free, noise-free waveform, jm is the
trigger jitter corresponding to the mth waveform, sm is
the noise corresponding to the mth waveform, tn is dis-

crete time with index n, and is the derivative of

the signal in the vicinity of tn. The average of Eq. (2),
〈f [tn]M〉, is the value typically provided by oscilloscopes
or other waveform recorders:

(3)

where 〈s[tn]M〉 is the mean value of the noise at tn and
gM[tn] is the amplitude contribution from jitter at tn.
Based on our observations and the physical cause of the
distributions of s and j, both distributions are normal
with zero mean and are independent and identically dis-
tributed for each tn and each waveform. The two distri-
butions, one caused by jitter and the other by noise, can
be dealt with independently. For noise, therefore, we
can write:

(4)

For noise and for large M, the median, mode, and mean
of 〈s[tn]M〉 will yield the same value for a symmetric
unimodal distribution, which is 〈s〉, where 〈s〉 = 0 for
the situation described herein. This is not the case for
the effect of jitter because the coefficient of j is signal
(data) dependent [(see Eq. (2)]. In the case where the
mean estimator is used to approximate the signal, jitter
will act as a low pass filter [2] thereby reducing the
bandwidth of the signal and increasing its transition
duration. The median and mode do not involve averag-
ing, and they do not bandlimit the signal as strongly as
does the mean. However, as will be shown later, the
ability to accurately reconstruct waveform aberrations
using the median is limited by the duration of the aber-
rations relative to σjit. The use of the word aberration
and how to compute its values are defined in Ref. [6].

The method we have examined to reduce the effects
of noise and trigger jitter on the reconstructed wave-
form is based on taking the median value for each
instant, tn, of the set of M waveforms. Therefore,
instead of letting the oscilloscope average a set of M
waveforms to yield one waveform that is typically dis-

played on the oscilloscope, a set of M unaveraged
waveforms are acquired by a computer to provide a
two-dimensional array of M unaveraged waveforms
each with N samples. At each tn the median is comput-
ed, and the results recorded to yield the reconstructed
waveform. We also examined using the mode to
remove jitter, but the results for the pulse parameter
values showed greater variation than that from using
the median. Also the waveform root-sum-of-squares
error was greater for the mode than for the median.
Although we have implemented the median method on
a computer after acquisition of all M waveforms, it
could also be implemented in the firmware of the oscil-
loscope prior to acquisition of the resultant (median
reconstructed) waveform, just as signal averaging is
presently implemented.

The median method has also been examined by other
researchers [7,8]. As they [7,8] both point out, the
median method works well for monotonic signals but
introduces errors when the signal is not monotonic (that
is, exhibits a local extremum). The duration of this
“monotonicity,” however, need only be long compared
to σjit (this is discussed in Sec. 5). The median method
causes the magnitudes of the local extrema to be under-
estimated. In Sec. 5, we provide an upper bound for this
error and show that it is small compared to the ampli-
tude of the aberration when the duration of the aberra-
tion is small compared to σjit. In [8], the author opts for
a jitter deconvolution method rather than the median to
improve the accuracy of the reconstructed spectrum
(the higher frequency components are increased).
However, the nature of the regularization operator in
waveform reconstructions using deconvolution will
cause a false increase in the magnitude of the high-fre-
quency components simply because of the spurious
ringing introduced near transitions (see Sec. 5). The
magnitude of this ringing will depend on, for example,
the accuracy of the estimate of the jitter function and
signal noise. An algorithm for removing noise and jitter
from waveforms using spline approximations was also
examined [9]. No pulse parameter values were provid-
ed in [9], consequently, a quantitative comparison was
not possible. However, by comparing figures of wave-
forms generated with similar conditions of noise and
jitter relative to pulse amplitude and transition duration
(or pulse duration), it appears the waveforms extracted
using the median method exhibit less departure from
the target values in the vicinities of aberrations than
does the spline method.
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2. Simulation Results of Ideal Step
Waveforms

We examined the median method for jitter and noise
reduction by using simulations and experiments. In the
first set of simulations, we used a jittered ideal step
with additive noise and examined the error in the recon-
structed waveforms as a function of noise and jitter.
The additive noise and trigger jitter were both modeled
as having a zero-mean normal distribution. The ampli-
tude, Ap, of the step was 1 amplitude unit (au); the rms
additive noise, σn, as a percentage of Ap, ranged
between 0 % and 50 % (or, 0 au to 0.5 au); and the rms
jitter, in units of a sampling interval (si), ranged from
0 si to 50 si. Figure 1 shows an example of one set of
128 jittered noisy waveforms (for the set shown, σjit =
50 si, σn = 0.01 Ap). Figure 2 shows the waveform
reconstructed using the median method, the input (ideal
step) waveform, and the waveform that is the result of
the average of the waveforms shown in Fig. 1. As can
be seen from Fig. 2, the reconstructed step closely
resembles the input step even for large σjit. Figure 3
shows the rms error value of the median reconstructed
steps as a function of noise and trigger jitter. The rms
error is given by:

(5)

where K is the number of iterations (100 in this case),
sn is the value of the step at index n, sn, ideal is the value
of ideal step at index n, and N is the number of samples
(1000 in this case). Since the ideal step had a 50 % duty
factor and a low and high state value of 0 au and 1 au,
its rms value is 0.707 au. Comparing this value to the
rms error shown in Fig. 3, it can be seen that the medi-
an reconstruction method significantly reduces noise
and jitter with respect to the input waveforms.

3. Simulation Results of Step-like
Waveforms

In the second set of simulations, we used the same
ideal step but filtered it with a Butterworth filter (order
= 3, low-frequency-pass cut off = 0.125/si, and sam-
pling frequency = 2/si) to give the signal features (such
as aberrations) typically observed in pulse waveforms.
The pulse parameters of transition duration (between
the instants corresponding to 10 % and 90 % of pulse
amplitude), t10-90, and overshoot, OS, were compared.
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Fig. 1. Set of 128 jittered ideal steps with additive noise. Noise level is 0.01 au rms and jitter is
50 si rms. (au = amplitude unit, si = sampling interval).
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Fig. 2. The median reconstructed step (solid line), the ideal jitter-free, noise-free step (dashed
line), and the mean of the 128 steps shown in Fig. 1 (dotted line). (au = amplitude unit, si = sam-
pling interval).

Fig. 3. Rms error in median reconstructed waveforms. Each datum is the result of 100 averages. (au =
amplitude unit, si = sampling interval).



The process of determining the pulse parameters starts
with obtaining the bimodal histogram of the waveform
amplitude values, per methods described in [6]. The
methods to compute transition duration and overshoot
are given in [6].

The noise-free waveform had a t10-90 = 5.86 si and an
OS of 0.08 au. Overshoot was examined because it is
the aberration with the largest amplitude and would be
the most obviously sensitive to jitter. The duration of
the overshoot (between its 50 % reference level
instants, as defined in Ref. [6]) was approximately 1 si.
Figures 4 and 5 show the effect of trigger jitter and
noise on the transition duration of the averaged and
median reconstructed waveforms. As can be seen, the
transition duration of the averaged waveform is very
sensitive to jitter and noise. The median-reconstructed
waveform provides waveforms that accurately repro-
duce the transition duration of the input signal for σjit ≤
10 si and σn ≤ 0.1 au. Figures 6 and 7 show the effect of
trigger jitter and noise on the overshoot of the averaged
and reconstructed waveforms. As can be seen, the over-
shoot of the averaged waveform is very sensitive to jit-
ter and noise. The overshoot in the median reconstruct-
ed waveform is also sensitive to jitter and noise. The
large error in overshoot for large jitter (σjit > 1 si) is

caused by the fact that both the positive and negative
transitions of the overshoot contribute to the set of data
values in the vicinity of the overshoot. This effect is
more clearly shown in Fig. 8 where different median-
reconstructed waveforms are shown along with the
averaged waveforms. In this figure, the duration, TOS,
(between 50 % reference levels) of the overshoot is
approximately 5 si and the transition duration of the
cumulative jitter distribution is 2.56 σjit. The results of
Fig. 8 indicate that integrity of the reconstructed wave-
form is better for σjit < TOS. OS in the median recon-
structed waveform is not sensitive to noise for σn ≤ 0.1
au. The primary purpose for showing Figs. 4 and 6 is as
a reference for the effects of averaging on overshoot
and transition duration in the presence of noise and trig-
ger jitter.

Figures 9 and 10 show the effect of the number of
waveforms, M, used in the simulation to compute the
median for σjit = 2 si and 4 si. The generated waveforms
were noise free. Each datum in Figs. 9 and 10 is the
result of repeating the simulation 100 times for each set
of M waveforms. The transition duration values show a
monotonic decrease in value, for both levels of jitter, to
the target value of 5.86 si. The overshoot values, on the
other hand, do not exhibit a common monotonic change
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Fig. 4. Transition duration (t10-90) for the waveform obtained from the computer average of
128 unaveraged waveforms. Each datum represents the average of 100 iterations. The line
labeled “input” represents the target value. (au = amplitude unit, si = sampling interval).
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Fig. 5. Transition duration (t10-90) for the waveform based on the median of 128 unaveraged
waveforms. Each datum represents the average of 100 iterations. The line labeled “input” rep-
resents the target value. (au = amplitude unit, si = sampling interval).

Fig. 6. Overshoot for the waveform obtained from the computer average of 128 unaveraged
waveforms. Each datum represents the average of 100 iterations. The line labeled “input” rep-
resents the target value. (au = amplitude unit, si = sampling interval).
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Fig. 7. Overshoot for the waveform based on the median of 128 unaveraged waveforms.
Each datum represents the average of 100 iterations. The line labeled “input” represents the
target value. (au = amplitude unit, si = sampling interval).

Fig. 8. Butterworth filtered noise-free step-like waveforms with different levels of jitter for
both the median reconstructed waveform and the averaged waveform. Also shown is the input
waveform. (au = amplitude unit, si = sampling interval).
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Fig. 9. The overshoot as a function of the number, M, of waveforms used in the median recon-
struction method. Each datum represents the average of 100 iterations of a simulation using M
waveforms. The hollow circles and squares represent the 2-sigma uncertainty bounds. The target
value for overshoot is 0.08 au. (au = amplitude unit, si = sampling interval).

Fig. 10. The transition duration as a function of the number, M, of waveforms used in the
median reconstruction method. Each datum represents the average of 100 iterations of a sim-
ulation using M waveforms. The hollow circles and squares represent the 2-sigma uncertain-
ty bounds. The target value for transition duration is 5.86 si. (au = amplitude unit, si = sam-
pling interval).



approaching the target value of 0.08 au. For σjit ≥ 4 si,
increasing M does not result in the correct value of 0.08
au for overshoot. As discussed earlier, this is because
the duration of the overshoot is less than the transition
duration of the cumulative jitter distribution. For σjit =
2 si, on the other hand, the target value of 0.08 au for
overshoot is obtained. Figures 9 and 10 also show that
M ≥ 512 is required to achieve convergence to the cor-
rect value. Furthermore, the variation in the values of
overshoot and transition duration are significant for
M < 128.

4. Experimental Results

Figures 11 to 18 show the results of experiments
using two different sampling oscilloscopes (samplers),
sampler A and sampler B, one each from a different
manufacturer with different levels of jitter. The jitter
was varied by adjusting the trigger level on the oscillo-
scope. All trigger jitter values were obtained using the
oscilloscope firmware. The 3 dB attenuation band-
widths for both samplers are nominally 50 GHz. The
pulses produced by the pulse generator have a nominal
transition duration of 12 ps. The sampling intervals
were 2 ps. There were M = 128 waveforms in each set
of waveforms.

Figure 11 shows the results of 128 waveforms
acquired using sampler A with a jitter level of 9.5 ps
rms. The transition duration of the cumulative jitter dis-
tribution is about 24.3 ps. Figure 12 shows the oscillo-
scope-averaged waveform, the mean computed from
each of the waveforms shown in Fig. 11, and the wave-
form reconstructed using the median method. Table 1
shows the transition duration values computed for these
three cases. Figures 13 and 14 show the same results as
Figs. 11 and 12 except for an rms jitter value of 1.5 ps.
The transition duration of the oscilloscope-averaged
waveform was not equal to that obtained from the com-
puter-averaged waveform. This may in part be
explained by the fact that the waveforms represented by
the oscilloscope-averaged waveform were not the same
as those used for the computer-averaged waveform.
This discrepancy may not have been as large if the
number (128) of waveforms to generate the averaged
waveforms shown in Figs. 11-14 was larger. Figures 9
and 10 show that around 500 waveforms should be
averaged to converge to a consistent value. However,
for the low jitter case, the differences between the tran-
sition durations of the computer- and scope-averaged
waveforms are within the uncertainties of the measure-

ment [3]. The differences in the transition durations of
the median-reconstructed waveforms for both levels of
jitter are within measurement uncertainty.

Figures 15 through 18 and Table 2 show the same
results for Sampler B as Figs. 11 through 14 and Table
1 did for Sampler A, except with different levels of trig-
ger jitter. The same observation made for Sampler A
and the low jitter case is the same for Sampler B (see
Tables 1 and 2). For the large jitter case for Sampler B,
however, the transition duration of oscilloscope-aver-
aged waveforms was greater than that of the computer-
averaged waveforms. Also, the transition durations of
the median-reconstructed waveforms were faster for
Sampler A than for Sampler B, indicating that the band-
width of Sampler A is greater than that of Sampler B.
This is corroborated by the low jitter results (see Tables
1 and 2 first row) where it can be approximated that the
contribution of jitter to tsys is negligible and, given the
same pulse source, the difference in transition duration
is caused by the difference in tinstr of the samplers.

Table 3 shows the results of limiting the number, M,
of waveforms used to compute the median on the value
of transition duration. This is analogous to the simula-
tion results shown in Fig. 10 except that only one set of
M waveforms is used in Table 3 whereas 100 sets of M
waveforms were used to produce the results shown in
Fig. 10. Table 3, however, still shows the importance of
selecting an appropriate value of M, namely one that is
adequate to obtain reproducible results.
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Table 1. Transition duration values computed for waveforms taken
from Sampler A

Jitter (ps) Averaged, Averaged, Median (ps)
scope (ps) computer (ps)

1.5 12.9 12.7 12.2
9.5 23.1 26.3 12.6

Table 2. Transition duration values computed for waveforms taken
from Sampler B

Jitter (ps) Averaged, Averaged, Median (ps)
scope (ps) computer (ps)

0.9 13.3 13.4 13.3
4.7 16.8 15.6 13.2
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Fig. 11. Set of jittered noisy waveforms acquired from sampler A, where the input jitter value
was measured to be 9.48 ps rms.

Fig. 12. The scope averaged, computer averaged, and median reconstructed waveforms corre-
sponding to the data set shown in Fig. 11.
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Fig. 13. Set of jittered noisy waveforms acquired from sampler A, where the input jitter value
was measured to be 1.45 ps rms.

Fig. 14. The scope averaged, computer averaged, and median reconstructed waveforms corre-
sponding to the data set shown in Fig. 13. The delay between waveforms is an artifact of the
acquisition process and has no effect on the analyses presented here.
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Fig. 15. Set of jittered noisy waveforms acquired from sampler B, where the input jitter value
was measured to be 6.44 ps rms.

Fig. 16. The scope averaged, computer averaged, and median reconstructed waveforms corre-
sponding to the data set shown in Fig. 15.
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Fig. 18. The scope averaged, computer averaged, and median reconstructed waveforms corre-
sponding to the data set shown in Fig. 17.

Fig. 17. Set of jittered noisy waveforms acquired from sampler B, where the input jitter value
was measured to be 0.92 ps rms.



5. Aberration Amplitudes

As mentioned earlier, a waveform reconstructed
using the median method will exhibit an underestimate
of the magnitude of aberrations. Typically, however, it
is difficult to estimate the uncertainty in overshoot (OS)
and undershoot (US) (both terms are defined in Ref.
[6]) of the reconstructed waveform because OS and US
in this waveform are affected by a variety of input sig-
nal and measurement instrument characteristics [3].
Consequently, we developed an empirical method to
estimate the uncertainty in OS and US of the median
reconstructed waveforms using the OS and US values
from the acquired waveform. This uncertainty is esti-
mated by the difference, dmax, between the jitter-caused
attenuation of a sinewave and that of a constant signal.
The sinewave has a half-period equal to the duration,
Tabb, of the OS or US from the acquired waveform. dmax

is given by:

(6)

where TPD is the width of the probability density func-
tion of the jitter, Vabb is the amplitude of the aberration,
k is an empirically-determined factor adjusted to ensure
dmax is greater than the measured error (in situations
where it is possible to measure the error), fabb = 0.5/Tabb,
and Tabb is the duration of the aberration. As a check for
Eq. (6), if TPD = 0 (no jitter), then dmax = 0 (no uncer-

tainty contribution from the jitter), as would be expect-
ed. On the other hand, if TPD = N/Tabb, where N is an
integer, then dmax would approach Vabb as N increased.
This also makes sense because as N increases, jitter
would tend to cause the aberration to disappear in the
observed waveform. The expanded uncertainties for OS
and US should include dmax as well as contributions
from other sources [3]. Simulations were performed
that yielded 25 sets of data for four different levels of
noise and different values of Tabb. Each set of data was
the result of the average of 256 waveforms. As shown
in Table 4, the results from the analysis of this simulat-
ed data show that Eq. (6) provides an overestimate of
the errors in OS values. With respect to fidelity of
reconstruction of the aberrations in the waveform,
“monotonicity” is satisfied if σjit ≤ 0.2 Tabb. The value of
k = 4 was used in Table 4 to ensure that uncertainty in
OS for the noisier signals would be less than dmax. This
method for finding a limit in the OS or US uncertainty
when σjit/Tabb = 2 did not work because this amount of
jitter effectively removed the aberration from the
observed waveform.

A comparison of waveforms reconstructed using the
median method and jitter deconvolution are shown in
Figs. 19-21. Figures 19 and 20 show waveforms recon-
structed using the median and jitter deconvolution
methods respectively. These figures show that for large
jitter, the median method provides a much more realis-
tic reconstruction of the input signal than does the jitter
deconvolution method. This is corroborated by the dis-
torted spectra caused by the jitter deconvolution
method (see Fig. 21). For small levels of jitter, tjit ≤ tinstr,
the jitter deconvolution and median methods appear to
work equally well for removal of jitter from the wave-
forms.
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Table 3. Transition duration values for waveforms acquired using Samplers A and B. tmeas
is the measured transition duration

Sampler (σjit) A (1.5 ps) A (9.5 ps) B (0.9 ps) B (4.7 ps)
M tmeas (ps) tmeas (ps) tmeas (ps) tmeas (ps)

2 11.4 10.7 11.5 10.3
4 12.2 19.1 13.0 9.7
8 12.5 6.4 13.1 8.4

16 11.8 9.5 13.1 11.2
32 12.4 9.3 13.4 11.3
64 12.5 9.4 13.3 13.0

128 12.2 12.6 13.3 13.2
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Table 4. The effect of σjit on OS for a given Tabb with and without noise. The four rows in each cell of the table are the OS value obtained from
the simulation, dmax; the estimated value, OSsm, plus dmax; and the standard deviation of the observed values, σOS. For the data in this table, k = 4
and Tabb = 5.293 si. The bottom row shows the value of OS for the noise-free, jitter-free input signal

OS (au)
σjit/Tabb 0.1 0.2 0.5 1.0 2.0

σn (au)

0 OSsm 0.05747 0.05747 0.05747 0.01472 0.00495
dmax 0.00530 0.02057 0.02057 0.06558 0.00001
OSsm+dmax 0.06277 0.07804 0.07804 0.08030 0.00496
σOS ± 2×10–13 ± 2×10–12 ± 2×10–12 ± 1.3×10–2 ± 1.7×10–7

0.001 OSsm 0.05748 0.05744 0.05744 0.01472 0.00495
dmax 0.00524 0.01992 0.01992 0.06558 0.00001
OSsm+dmax 0.06272 0.07736 0.07736 0.08030 0.00496
σOS ± 2.7×10–5 ± 1.610–4 ± 1.7×10–4 ± 2.2×10–2 ± 2.4×10–7

0.01 OSsm 0.05755 0.04688 0.04688 0.01634 0.00498
dmax 0.00505 0.01697 0.01647 0.05896 0.00930
OSsm+dmax 0.06260 0.06385 0.06335 0.07530 0.01428
σOS ± 2×10–4 ± 7.410–4 ± 7.4×10–4 ± 1.6×10–2 ± 1×10–2

0.1 OSsm 0.05576 0.05055 0.05055 0.0367 0.02595
dmax 0.00516 0.02262 0.02262 0.1351 0.00280
OSsm+dmax 0.06082 0.07317 0.07317 0.1718 0.02575
σOS ± 9×10–3 ± 2×10–3 ± 2×10–2 ± 1.2×10–2 ± 7×10–3

Input OS (au) 0.05474 0.05474 0.05474 0.05474 0.05474

Fig. 19. The input waveform and the waveforms reconstructed using the median method for
different values of jitter as indicated by “2j,” “4j,” and “6j.” The jitter is in units of si; there-
fore, 2j corresponds to jitter of 2 si.
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Fig. 20. The input waveform and the waveforms reconstructed using the jitter deconvolution
method for different values of jitter as indicated by “2j,” “4j,” and “6j.” The jitter is in units
of si; therefore, 2j corresponds to jitter of 2 si.

Fig. 21. The spectra of the input waveform and the waveforms reconstructed using the medi-
an and jitter deconvolution methods for different values of jitter as indicated by “2j,” “4j,”
and “6j.” The jitter is in units of si; therefore, 2j corresponds to jitter of 2 si.



6. Discussion

The simulation results of Secs. 2 and 3 and experi-
mental results of Sec. 4 can be compared by multiply-
ing the simulation horizontal axis values and corre-
sponding waveform parameters by two and then chang-
ing the simulation horizontal axis units from si to ps.
Accordingly, the jitter of 2 si becomes 4 ps and the sim-
ulated transition duration of 5.86 si becomes 11.72 ps,
which corresponds to the transition duration of typical
high-speed pulse generators. The simulated trigger jit-
ter of 4 ps is at least three times larger than what is typ-
ically observed. Consequently, the difficulty in recon-
structing the aberrations of a waveform that was expe-
rienced in the simulation would not be experienced in
reconstructing actual signals used in waveform metrol-
ogy. In general, the simulation and measurement results
show that the median method for reducing the effects of
trigger jitter and noise on the acquired waveform is
effective. However, to accurately reproduce waveform
aberrations, the duration of the aberrations should not
be greater than the transition duration of the cumulative
jitter distribution.
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